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INTRODUCTION

Positive definite functions associated with the ultraspherical polynomials
were studied by Schoenberg [24], Kennedy [18], and Bingham [5].
Generalizing Bochner's theorem, it was shown that positive definite functions
associated with ultraspherical polynomials are exactly the absolutely
convergent ultraspherical expansions having nonne~ative coefficients, see
[18, Theorem 3.1]. In [25,26] Schwartz investigated absolutely convergent
nonnegative expansions in certain general orthogonal polynomials. Here we
shall prove a Bochner theorem in the setting of commutative hypergroups.
An application of this theorem characterizes the expansions studied by
Schwartz as exactly the positive definite functions. For that, positive
definiteness is defined in a natural way. The correspondence between
hypergroups and certain orthogonal polynomial sequences was recently
established in [19].

The theory of hypergroups has been developed in [11, 17, 27] and has
received a good deal of attention from harmonic analysts. Hypergroups arise
as double coset spaces of locally compact groups. As yet mentioned, certain
orthogonal polynomial sequences bear a hypergroup structure, too. Our main
reference for hypergroups will be [17].

Throughout this note K will be a commutative hypergroup. Denote by

K = {a: K -+ C: a continuous, bounded, aCe) = 1,

Px *pia) = a(x) a(y), a(x) = a(x)},

the character space of K. Equipped with the topology of uniform
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convergence on compacta, K is a locally compact Hausdorff space. For each
p, E M(K) the Fourier transform is given by

p(a) = fa(x) dp,(x).

For p, E M(K) the inverse Fourier transform is defined by

if(x) = fa(x) dp,(a).

We shall say that K is a hypergroup with respect to pointwise multiplication,
if for a, fJ E K there exists a probability measure Pa *PI3 E M(K) such that

a(x) fJ(x) = (Pa *P13f (x)

for each x E K, and K is a hypergroup with this convolution and the
complex conjugation as involution and one as unit. In general the dual K of
a commutative hypergroup K is not a hypergroup with respect to pointwise
multiplication, see [9, Example 4.8; 17, Example 9.1c], or Examples 2f and
2g in Section 2. If K is a dual hypergroup, then K ~ (K) ~ in a natural
manner, [17, Theorem 12.4B]. If in addition K= (K( holds, then [17,
Theorem 12.3B] shows that the Fourier transforms p of positive measures
p, E M(K) are exactly the bounded positive definite functions on K.

The aim of this treatise is to characterise the Fourier transforms p of
positive measures p, E M(K), where K is an arbitrary commutative
hypergroup without any assumptions on the dual K. Further we describe the
applications for orthogonal polynomial expansions.

I. BOCHNER THEOREMS

Recall that K denotes a commutative hypergroup. A continuous bounded
function rp E C(K) on K is called strongly positive definite if for any
p, E M(K) with if ~ 0, the inequality f rp(a) d/.J(a) ~ 0 holds. If rp is strongly
positive definite, then rp(1) = f rp(a) dpi (a) ~ O. The set of all strongly
positive definite functions on K is denoted by SP(K). A measure p, E M(K),
such that if ~ 0 holds, we shall call positive definite. The set of all positive
definite measures is denoted by PM(K).

PROPOSITION I. Let rp be in SP(K).

(a) If p, E PM(K), then (rpp,) - ~ O.

(b) If p, E M(K) such that if is real valued, then f rp(a) dp,(a) is real.



BOCHNER THEOREMS 313

(c) The equality lp(ii) = lp(a) holds, and iP and Re lp are also in SP(K).

(d) If If! is a further element of SP(K), then lplf! and c I lp + c2 If! are in
SP(K)for cl' c2 >O.

Proof (a) If p. E PM(K), then (P;p.) - (y) = I ii(z) dpx * py(z) >0 for
each x, y E K. Thus (lpp.f (x) = I lp(a) d(p';p.)(a) >0 for any x E K.

(b) Let ii(x) E IR for any x E K. Then IliiliuPI +p. E M(K) and
(1liilluPI +p. f >O. Thus Iliillulp(l) + I lp(a) dp.(a) >O. In particular
I qJ(a) dp.(a) E IR.

(c) Since (Po: +p;;) - = 2 Re a, we have lp(a) + qJ(ii) E IR by (b). Since
(Po: - p;;) - /i = 2 1m a, we see that (qJ(a) - lp(ii»/i E IR. Hence lp(ii) = lp(a).
Further by (u*f =p, [17,12.IF], we have I qJ(a) dp.(a) =I qJ(ii)dp.(a) =
] qJ(a) d*(a) >O. Thus iP E SP(K), and then Re lp E SP(K) holds.

(d) The product lplf! is strongly positive definite by (a).

Denote by m the Haar measure on K, see [28], and imbedLI(K)=LI(m)
into M(K) as usual. Levitan's theorem, [17,7.31], yields a nonnegative
measure n on K, the Plancherel measure, such that

f If(xW dm(x) = f1](aW dn(a)

Also we imbed L I(K) = L I(n) into M(K). For a locally compact space X
denote Coo(X) (resp. Co(X) the space of all continuous functions having
compact support (resp. vanishing at infinity).

PROPOSITION 2. (Coo(K)f is a sup-norm dense subspace of CoCK).

Proof By [6, Theorem 2.4.1] we know that (Coo(K)f is a subspace of
CoCK). Assume that (Coo(K)f is not sup-norm dense in CoCK). From the
Hahn-Banach theorem and Riesz' representation theorem there exists a
p. E M(K), p. =1= 0, such that I h(x)dp.(x) = 0 for any hE Coo(K). Thus
0= If h(a) a(x) dn(a) dp.(x) = I h(a) fiCa) dn(a) for any hE Coo(K). By [17,
Lemma 12.2B] we have p. = 0, a contradiction.

THEOREM 1. Let qJ be in SP(K). Then there exists a unique positive
measure v E M(K) such that qJ Isupp n = vi supp n. Conversely v is strongly
positive definite for each positive measure v E M(K).

Proof At first let v E M(K) be a positive measure. If p. E PM(K), then
I v(a) dp.(a) = I ii(x) dv(x) >0, i.e., vE SP(K). Now assume that lp E SP(K).
If p. E M(K) with ii being real valued, then (1liilluPI ± p.) - >0 holds. Thus
IliilluqJ(l) ± I lp(a) dp.(a) >0, and then II lp(a) dp.(a) I~ lp(l) Iliillu' For an
arbitrary p. E M(K) denote by P.I = (u +p.*)/2, P.2 = (u - p.*)/(2i). Then
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.ul = Re.u, .u2 = Im.u. Hence If qJ(a) d.u(a) I~ qJ(1 )11.ulllu +qJ(l) 11.u211u ~
2qJ(I)II.ullu· Thus ~:M(Kf --+(;, ~<.u)=fqJ(a)d.u(a) is a sup-norm
continuous linear functional. Denote by ~o the extension to Co(K) of
~ I(Coo(K)) -. There exists a measure v E M(K) such that

IqJ(a) h(a) dn(a) = ~o(li) = Ih(x) dv(x)

for each h E Coo(K). Further v is a positive measure. In fact, given
fE Co(K), f~ 0 and e > 0, Proposition 2 yields a function hE Coo(K) such
that Ilf- hllu < e. We may assume that h is real valued. Define
.u = ePI +h E M(K). Then .u~ 0, and hence ~<.u) ~ O. Since
If f(x) dv(x) - ~<.u)1 ~ 4qJ(l) e, we see that f f(x) dv(x) ~ O. Thus v and also
vare positive. If h E Coo(K), then

IqJ(a) h(a) dn(a) = Ih(x) dv(x) = Ih(a) f(a) dn(a).

The continuity of qJ and V implies, that qJ = V on supp n. Finally the
uniqueness of v follows by [17, Lemma 12.2B].

COROLLARY 1. (a) If qJ E SP(K), then IqJ(a)1 ~ qJ(l) for each
a E supp n.

(b) Assume that supp n = K. If (qJn) is a sequence of functions of
SP(K) such that qJn converges uniformly on compact subsets of K to a
continuous function qJ, then qJ is strongly positive definite.

Proof (a) follows by Theorem 1.

(b) By (a) and qJ n(1) --+ qJ( 1) there exists a constant M ~ 0 such that
IqJn(a)I~M for each nEIN and each aEK. Let .uEPM(K) and e>O.
Choose a compact subset C <;; K such that l.u II K\C < e. Then

IIqJ(a) d.u(a) - IqJn(a) d.u(a) I~ 2Me

+f IqJ(a)-qJn(a)ldl.ul(a).
c

Now it is obvious that f qJ(a) d.u(a) ~ O.

Equip the space M(K) with the weak topology, Le., the topology defined
by the duality (M(K), Cb(K), where Cb(K) is the space of all bounded
continuous functions, see, e.g., [16, p. 24].
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COROLLARY 2. Assume that supp n = K. The Fourier transformation
- : M+ (K) --+ SP(K) defined on the set M+ (K) of all positive measures of
M(K) is a homeomorphism, where M+ (K) bears the weak topology and
SP(K) the topology of uniform convergence on compact subsets of K.

Proof One has to make minor modifications of the proof in the group
case. First, assume that (vJ is a net with v" E M+ (K), and v E M+ (K) such
that v" --+ v weakly. Let aoE K and e > O. Similar arguments as (e.g., in the
proof of Theorem 3.13 of [4, p. 15]) yield an index "0 and a neighbourhood
Vao of ao such that 11i;(ao) - v;(a) I< e for each a E V.{to''';;:: "0' But now it
is routine to prove that v:: --+ von compact subsets of K. Conversely, assume
that v:: tends to v in the topology of compact convergence. Using
Proposition 2 the arguments of [4, p. 16] yield that va tends to v vaguely. By
[16, Theorem 1.1.9] we have va --+ V weakly.

Remark. In general supp n is a proper subset of K. But if K is compact,
then supp n = K. In fact let a E K. By [17,7.31] we see that
0< f la(xW dm(x) = f la(fJW dn(fJ). But a(fJ) = f a(x)fl(x) dm(x) = 0 for
a*- fl, [27, Theorem 11.2.2]. Thus a E supp n.

COROLLARY 3. Let ({J E SP(K) n L I (K). Then ¢ is nonnegative,
¢ E LI(K), and (¢f(a) = ({J(a) for each a E supp n.

Proof By Theorem 1 we may write ((J(a) = v(a) for each a E supp n,
where v E M +(K). Thus vn = ({In E M(K). By [17, Lemma 12.2B] we see that
v=¢m; Le., ¢ELI(K) and ¢;;::O. Again [17,12.2B] yields that
({In = (¢mf n. Since (¢f and ({J are continuous functions, (¢) - (a) = ({J(a)
holds for every a E supp n.

If K is a hypergroup with respect to pointwise multiplication one can
consider the relation of strongly positive definite functions to bounded
positive definite functions on K. A· continuous function ({J E C(K) is called
positive definite, if

n n

L L A/"ijPa/*Pa;«({J);;::O
i=1 j=1

for any choice of AI"'" An E C and a l , ... , an E K, compare [17, 11.1].

PROPOSITION 3. Assume that K is a hypergroup with respect to pointwise
multiplication. If ({J is in SP(K), then fi'x ({J is a bounded positive definite
function on K for each x E K.
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Proof. For .1.1"'" A.nE 1(;, al"'" an E K denote by A. = I:7~ 1.1./ Po,' Then
(A. * A. *) - (x) = II:7~ 1 A./alxW ;;:: O. Hence for x E K

n n

2: )' A./A.j Po, *Paj(P;({J) = Jp;({J(a) dA. * A. *(a)
/=1 j=1

= [({J(A. * A. *)f (x);;:: 0

by Proposition 1(a).

Weare not able to give a complete answer to the question whether the
converse implication of Proposition 3 is valid. But we can prove the
following statement:

THEOREM 2. Assume that K is a compact hypergroup such that K is a
hypergroup with respect to pointwise multiplication. If ({J is a bounded
function such that P;({J is positive definite for each x E K, then there exists a
unique positive measure v E M(K) such that ({J = V. Conversely, P; v is positive
definite for each v E M +(K) and x E K.

Proof. Of course p;v= (Px * v( is a positive definite function, if
v E M+(K). The proof of the converse implication is motivated by [7], see
also [15, Theorem 30.2]. Denote by T(K) the linear span of 1(. Define the
linear functional ¢ on T(K) by

n

¢(f) = L A./({J(a/)
/=1

for f = I:7~ 1 A./a/, .1./ E 1(;, a/ E K. Now ¢ is well defined, since K is a linear
independent set in T(K). We state that Px * uJ) E T(K) and

(1)

for each fE T(K), x E K. In fact if f = I:7= 1 A./a/ E T(K), we have a/aj =
I:Z'~ 1 b~M, f3~ E K, b~ ;;:: O. Observe that K is a discrete hypergroup. Hence

n miJ

Px * UJ) = 2: A./A.j L b~. f3~(x) f3~ E T(K).
l,j= 1 k= 1

Further
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since f;qJ is positive definite. Now we prove in a similar way as in
[15, (30.2») that

?(g) ~ 0

for g E T(K), g ~ O. For 1= I:?= 1 A./a l E T(K) define liP E T(K) by

(2)

Given h E T(K), h ~ 0 denote by ?h the linear functional on T(K) defined by

Since U])iP(x) = ?(Px * (ff» ~ 0 for each x E K,

Using [27, Theorem 11.2.2) one obtains

The norm-continuity of?h, [29, Theorem 2.13) and (3) imply that

?h(g) ~ 0

(3)

(4)

for g E T(K), g ~ O. To prove (2) now choose an approximate unit (h,e> in
L1(K), h"ET(K), h,,~0,llh,,111=1 according to [29, Lemma 2.12). For
a E K we have ll)a) -t 1. Hence for g E T(K), g ~ 0, ?h.(g) tends to ?(g).
Thus ?(g) ~ 0 by means of (4). Using (2) one proves as in [15, (30.2),
p. 157] that? is norm continuous. T(K) is norm dense in C(K). Hence there
exists a unique positive measure v E M(K) such that

?(g) = fgdv for g E T(K).

In particular qJ(a) = ?(a) = 6(a) for every a E K.
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COROLLARY 4. Assume that K is a compact hypergroup such that K is a
hypergroup with respect to pointwise multiplication. Then qJ E C(K) is
strongly positive definite if and only if PxqJ is a bounded positive definite
function for each x E K.

There is a (rather weak) duality theorem for a hypergroup K, whose dual
K is a hypergroup with respect to pointwise multiplication: K <;; (K) ~, see
[17, 12.4]. If in addition K = (Kf holds, we shall call K a strong
hypergroup. Examples for strong hypergroups are given in la and Section 2,
Example 2a.

PROPOSITION 4. Assume that K is a hypergroup with respect to pointwise
multiplication. K is a strong hypergroup if and only if each bounded positive
definite qJ E C(K) is strongly positive definite.

Proof If K is a strong hypergroup, [17, Theorem 12.3B] yields that
every bounded positive definite function qJ E C(K) is strongly positive
definite. Conversely, let qJ E (K) A. Hence qJ is a bounded positive definite
function. By the assumption and Theorem I we can write qJ = V, where
v E M+ (K). On the other hand the linear functional on Coo(K)-

~"'(]) = fqJ(a) f(a) dn(a), fE Coo(K),

is multiplicative. Since ~",(j) = f !(x) dv(x), we see that ~'" is norm
continuous. Using Proposition 2, ~'" admits a unique extension to Co(K).
This extension is multiplicative, too. Hence there exists a point x E K such
that

~"'(]) =flx),

for each f E Coo(K), i.e., qJ = p;. Therefore K = (Kf, see [17, 12.4].

Finally we present a consequence of [17, Theorem 12.3B], which has a
nice interpretation for our examples in Section 2.

COROLLARY 5. Let qJ E L l(K) be a bounded positive definite function.
Then rfi is nonnegative, rfi E L 1(K), and (rfi) - = qJ.

Proof Reference [17, Theorem 12.3B and Lemma 12.2B] yields that
rfi ELI (K) and rfi ~ O. The inversion theorem, [17, Theorem 12.2C] says that
(rfif = qJ.

EXAMPLE la. First we describe a rather general class of strong
hypergroups. Let G denote a locally compact group and let B denote a
subgroup of the automorphism group Aut(G) that contains the group I(G) of
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inner automorphisms. If the closure B of B in Aut(G) is compact, then the
B-orbit space GB of G is a commutative hyyergroup with natural operations,
see [23, Sect. 1]. In [14] it is shown that (J~ is a hypergroup with respect to

/'-~

pointwise multiplication. That (GB ) is equal to GB follows by [13]. This
class includes among others the set of conjugacy classes of compact groups
or K = (JRn)so(n)'

EXAMPLE 1b. Theorem 1 applies to any commutative double coset space
G//H, where H is a compact subgroup of the locally compact group G. For a
concrete example take G = SL(2, q and H = SU(2). Then [0, CX) [ is a
model for K= G//H, see [17,15.5 and 9.5], and K ~ [-1, CX) [, whereas
supp 1r ~ [0, CX) [.

2. ApPLICATIONS TO ORTHOGONAL POLYNOMIAL EXPANSIONS

In the sequel K is lNo = IN U {o} bearing a hypergroup structure
corresponding to certain orthogonal polynomial sequences, see [19]. We
have to set up some notation. Let (an)neN' (bn)neN' (Cn)neN be three real­
valued sequences such that an >0, cn>0, bn~ 0, and an + bn+ cn= 1. If
(an)' (bn), (cn) satisfy a certain positivity property (P), see [19, Sect. 2], these
sequences determine a hypergroup structure on lNo. The "generating"
convolution is given by

n E IN.

The Haar measure on lNo is given (up to normalization) by

Fixing a o >O,bo E JR such that a o+ bo = 1 define

n= 2, 3,....

Po(x) = 1, P1(x) = (l/ao) x - (bo/ao)

Pn+ l(X) = (l/a n) P1(x) Pix) - (bn/an) Pn(x)

- (cJan)Pn_1(x), n E IN. (R)

Now (Pix» is an orthogonal polynomial sequence. For x E IR denote
~ :~o -t .JR, ax(n) = Pn~x), and let Ds =:= {x E JR: (Pn(x» is bounded}. Then
IN~ - {ax' x E Ds }, Ds is homeomorphic to IN'o' and Ds r;; [1 - 2ao' 1]. The
Plancherel measure 1r is the orthogonalization measure of (Pn(x». If Ds = iN'a
is a hypergroup with respect to pointwise multiplication, then lNo is a strong
hypergroup, [19, Proposition 2]. Likewise D s is then a strong hypergroup.



320 RUPERT LASSER

THEOREM 1'. Assume that (an)' (bn), (cn) have property (P). Let
({J E C(D,) be a continuous function on Ds' Then

etJ

((J(x) = L: dnPn(x) h(n)
n=O

holds for x E supp n, where dn~ 0, L::'=o dnh(n) < co, provided

f ((J(x) dfJ(x) ~ 0 for any measure fJ E M(Ds ) with
Ds

f Pn(x)dfJ(x)~O.
Ds

The coefficients dn are given by dn= f ((J(x) Pn(x) dn(x). Conversely for
any sequence (dn)neNo' dn ~ 0, L dnh(n) < co and ((J(x) =
L dnPn(x) h(n), x E Ds ' the inequality f ((J(x) dfJ(x) ~ 0 holds for fJ E M(D s )

with f Pn(x) dfJ(x) ~ O.

We call (gk)keN' gk E C(Ds ) a positive definite approximate unitfor Ds ' if
II gklll ~ 1, g;;'(n) ~ 0 and g';;(n)~ 1 as k ~ co for each n E IN. If Ds admits
such an approximate unit we can give an improvement of Theorem 1'.

LEMMA 1. Let (an)' (bn), (cn) have property (P). Assume that D s admits
a positive definite approximate unit. Let ({J E C(Ds) such that
dn= f ((J(x) Pn(x) dn(x) ~ 0 holds. Then L dnh(n) < co ..

Proof Let E be a finite subset of 1N 0 • Denote the positive definite
approximate unit by (gk)' Then [17, Theorem 12.11] yields that

)' g;;'(n) dnh(n) ~ L: g{(n) dnh(n) = fgk(X) ((J(x) dn(x)
neE neNo

~ II gklllll({Jllu ~ 11({Jllu

for each k E IN. Hence LneE dnh(n) ~ 11({Jllu and then Lne~ dnh(n) ~ 11({Jllu'

THEOREM 3. Let (an)' (bn), (cn) have property (P). Assume that Ds
admits a positive definite approximate unit. Let ({J E C(Ds)' Then
((J(x) = L dnPn(x) h(n) holds for each x E supp n, where dn~ 0,
L dnh(n) < co, provided

f({J(x)Pn(x)dn(x)~O foreach nE lN o'

The coefficients dn are given by dn= f ((J(X) Pix) dn(x).
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Proof Denote dn= rP(n). By Lemma 1 r.~=o dnPix) h(n) is uniformly
convergent, say to If/(x). Since VI = rP we have rp(x) = If/(x) for each
x E supp n.

THEOREM 4. Let (an)' (bn), (cn) have property (P) and assume that Ds is
a hypergroup with respect to pointwise multiplication. Let rp E C(Ds)' The
following are equivalent:

(a) rp(x) = r. dnPn(x) h(n) for each x E Ds' where dn~ 0,
r. dnh(n) < co;

(b) Jrp(x) dp.(x) ~ 0 for each p. E M(D s) with JPn(x) dp.(x) ~ 0;

(c) dn=J rp(x)Pn(x)dn(x)~O;and

(d) for any n-tuple XI'"'' xnE Ds the matrix (Px, *Pxirp» I <,I,j<,n is
positive definite.

Proof Since Ds is a dual hypergroup, we have supp n = Ds' By the
preceding and [17, Theorem 12.3B] it remains to show that D s admits a
positive definite approximate unit. According to [9, Theorem 2.8] choose an
approximate unit Uk) in L I(Ds) such that fk E C(Ds). Define gk =
fk *fk* /11 fk *f/ III' One can easily establish that (gk) is a positive definite
approximate unit for Ds .

Now we point out how the positivity of connection coefficients can be
used in the discussion of positive definiteness. If (Qn(x» and (Pn(x)) are two
sequences of orthogonal polynomials, (Qn(x), Pn(x) of degree n), then one
can write

n

Qn(x) = L Ck,nPk(X).
k=O

The numbers ck,n are called connection coefficients. The problem to
determine these coefficients or to decide when these coefficients are
nonnegative is thoroughly studied by Askey and others, see [1, Lecture 7].
We shall shortly write (Pn(x» ~ (Qn(x), if every ck,n is nonnegative.

Let (an)' (bn), (cn) (resp. (a~), (b~), (c~» have the property (P). Fix
ao, bo (resp. a~, b~) and define (Pn(x», h, Ds ' n (resp. (Qn(x»), h', D~, n' ) as
above. We assume that Ds = D~. We note that supp n is infinite. This is
implied, for example, by Proposition 2. The following result can be used in
the discussion of a problem in numerical analysis (cf. [22D.

THEOREM 5. With the preceding notation the following are equivalent:

(a) (Pn(x)) ~ (Qn(x»,

(b) PM(Ds) £;; PM(D~),

(c) SP(Ds);2 SP(D~).
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If in addition supp n' = D~ holds, then each of these conditions is equivalent
to the following:

(d) If rp E C(Ds) with d~ = f rp(x) Qix) dn'(x) ~ 0, L d~h'(n) < 00,

then dn= f rp(x)Pn(x) dn(x) ~ 0, L dnh(n) < 00.

Proof Obviously, (a) -+ (b), and (b) -+ (c). Since Qm E SP(D~), condition
(c) and Theorem I yield that

m

Qm(x) = L Ck.mPk(X) for each x E supp n,
k=o

where ck•m ~ O.

But suppn is ipfinite. Hence (Pn(x))~(Qn(x)). Suppose that suppn'=D~.
Then rp(x) = L d~ Qn(x) h'(n) for each x E D~. In particular, rp E SP(DD.
Hence condition (c)-+ (d). Conversely, by (d) we see that cn.m/h(n)=
f Qm(x) Pn(x) dn(x) ~ O.

Applying Corollary 5 we have a contribution to positive sums of
orthogonal polynomials, see [1, Lectures I, and 8].

COROLLARY 5'. Let (an)' (bn), (cn) have property (P). Let d= (dn)neNo
be a sequence such that Lldnlh(n) < 00. Then L dnPn(x) h(n) ~ ofor each
x E Ds if and only if (Pm, *Pm/d ))1 <.,IJ<:..n are positive definite matrices for
each n-tuple ml"'" mnE lN o.

EXAMPLE 2a (Jacobi polynomials). Fix a, fJ E IR, a ~ fJ > - I, a +
fJ + I ~ O. Define for n E IN:

2(n + a + fJ + I)(n + a + I)(a + fJ + 2)
an = ~(2=-n-'-+-a-+--::fJ:'-+~2:7)-:'::(2:'-n-+-a-+---;:'"fJ'---'+-::I~)-=-2(:-a-+--'-I:7") ,

b - a - fJ [I (a + fJ + 2)(a + fJ) ]
n- 2(a + I) - (2n + a + fJ + 2)(2n + a + fJ) ,

2n(n + fJ)(a + fJ + 2)c = ---'_....:....:....c......-'-_-'- _

n (2n+a+fJ+ 1)(2n+a+fJ)2(a+ I)

Let a o = 2(a + I)/(a + fJ + 2), bo = (fJ - a)/(a + fJ + 2). Then (R) defines
Pn(x) = p~Q;·I3)(x), the classical Jacobi polynomials. The sequences (an)'
(bn), (cn) have the property (P) and suppn=Ds = [-I, I], see
[19, Sect. 3(a) ]. If in addition fJ ~ -! or a +fJ ~ 0, then D s = [-I, I] is a
hypergroup with respect to pointwise multiplication. Moreover, lN o and
[-I, I] are strong hypergroups, see [19, Sect. 4, ad(a)]. For a =fJ we have
the ultraspherical polynomials.
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EXAMPLE 2b (Continuous q-Jacobi polynomials). Fix a, fJ, q E IR,
a ~ fJ >- 1, a + fJ + 1~ 0, 0 <q < 1. Let

(1 - q<>+n+ 1)(1 + qlH n+1)(1 + qn+ 1)(1 _ q<>+lHn+ I)
A---'-------=--~--'-------=-,.-;;-;-..-::-7-~---=--~.._::_7'=_---'--n- vq(l_q<>+ 1H 2n+I)(I_q<>+1l+2n+2)

vq(1 - qn)(1 +q<>+Il+ n)(1 +q<>+n)(1 _ qlH n)
Cn = (1 _ q<>+ 1H 2n)(1 _ q<>+1l+ 2n +I)

Consider Q~<>,'Il)(x; q) = Qn(x) defined by

2xQn(x) =AnQn+I(X) - (An + Cn - vq- l/vq) Qn(x) + CnQn_I(X),

Qo(x) = 1, Q_I(X) = O.

The Qn(x) are (up to normalization) the continuous q-Jacobi polynomials
studied in [12,21], see also [3, (3.4)]. Observe that the zeros of Qn(x) are
contained in ]-1, 1[, see [12, Sect. 2]. Hence Yn = Qn(1) > O. Let

Now define

b =vq+l/vq-An-Cn
n 2ao

For the polynomials p~<>,Il)(x; q), which are defined by (R), we have
p~<>,Il)(x;q)=Q~<>,/l)(x;q)jYn' Hence an+bn+cn=1. Now use [21] or
[12, Theorem 1]. In particular we see that bn ~ O. But the main contribution
of [21 J is that (an)' (bn), (cn) satisfy the property (P). Further supp n =
[-1, IJ, see [3, (4.1)J, and [-1,1] c:;;.Ds c:;;. [1- 2ao' 1]. The limit case q~ 1
yields Example 2a.

EXAMPLE 2c (Continuous q-ultraspherical polynomials). Fix -1 <fJ < 1,
o< q < 1. The continuous q-ultraspherical polynomials Cn(x; fJ Iq)
correspond in the described way to a hypergroup structure on lNo' For
details we cite [19, Sect. 3(c)]. Further supp n = D s = [-1, 1] holds. These
examples are partially contained in Example 2b.

EXAMPLE 2d (Associated continuous q-ultraspherical polynomials). Fix
0< fJ ~ q < 1,0 < a < 1. The associated q-ultraspherical polynomials
C~(x;fJlq) bear a hypergroup structure, see [8] or [20,3(f)]. We have
suppn=Ds = [-1, 1].

640/37/4-3



324 RUPERT LASSER

EXAMPLE 2e (Associated Legendre polynomials). Fix v~ O. The
associated Legendre polynomials Pix; v) correspond to a hypergroup
structure on lNo, see [19, Sect. 3(b)]. We have supp 7C = D s = [-1, I].

EXAMPLE 2f (Polynomials connected with homogeneous trees). Fix a ~ 2.
Define an = (a - 1)/a, bn= 0, en = l/a, n E IN, a o = 1, bo = O. In this way
there is defined a hypergroup structure on lNo, [19, Sect. 3(d)], the
orthogonal polynomial sequence being intimately connected with
homogeneous trees. We have Ds = [-1, I], but supp 7C = [-2 va=t/a,
2va=t/a], see [10, Theoreme I]. In particular lNo is not a strong
hypergroup, if a > 2.

EXAMPLE 2g (Generalized Tchebichef polynomials). Let a, PE IR,
P> - 1, a ~P+ 1. The generalized Tchebichef polynomials T~a,I3)(x) bear a
hypergroup structure [19, 3(f)]. We have supp 7C = D s = [-1, 1]. If P>-·L
then Ds is not a dual hypergroup, see [19, Sect. 4, ad(f)].

Further examples may be found in [19]. Concerning applications of
Theorem 5 to concrete examples we refer to [1, (7.33), (7.34)] saying that
(p~a.a)(x))~ (P~v,v)(x)) if y~ a > - 1 and (p~a,I3)(x)) ~ (p~v,I3)(x)) if
y ~ a> - 1 and to [3, (4.15)] saying that

(Cn(x;Plq)) ~ (Cn(x; ylq) if 0 <q < 1, -1 <Y~P < 1.

The general result of [2, Theorem 1] yields that

where Pn(x, v) are the associated Legendre polynomials of Example 2e.
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